题目
给定一个包含非负整数的 m
n
网格 grid
,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
**说明:**每次只能向下或者向右移动一步。
示例 1:
输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。
示例 2:
输入:grid = [[1,2,3],[4,5,6]]
输出:12
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 200
0 <= grid[i][j] <= 100
解题
方法一:动态规划
思路
经典的动态规划问题:
- 状态定义: 表示从 走到 时的最小路径和。
- 状态转移方程:。
- 初始状态: 数组的第一行和第一列为矩阵第一行和第一列的前缀和数组。
那么从左上到右下的最小路径和为 。
代码
class Solution {
static final int INF = 0x3f3f3f3f;
public int minPathSum(int[][] grid) {
int m = grid.length, n = grid[0].length;
int[][] dp = new int[m][n];
dp[0][0] = grid[0][0];
for (int i = 1; i < m; ++i) dp[i][0] = dp[i - 1][0] + grid[i][0];
for (int j = 1; j < n; ++j) dp[0][j] = dp[0][j - 1] + grid[0][j];
for (int i = 1; i < m; ++i) {
for (int j = 1; j < n; ++j) {
dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
}
}
return dp[m - 1][n - 1];
}
}
评论区