题目
给你一个下标从 0 开始、严格递增 的整数数组 nums
和一个正整数 diff
。如果满足下述全部条件,则三元组 (i, j, k)
就是一个 算术三元组 :
i < j < k
,nums[j] - nums[i] == diff
且nums[k] - nums[j] == diff
返回不同 算术三元组 的数目。
示例 1:
输入:nums = [0,1,4,6,7,10], diff = 3
输出:2
解释:
(1, 2, 4) 是算术三元组:7 - 4 == 3 且 4 - 1 == 3 。
(2, 4, 5) 是算术三元组:10 - 7 == 3 且 7 - 4 == 3 。
示例 2:
输入:nums = [4,5,6,7,8,9], diff = 2
输出:2
解释:
(0, 2, 4) 是算术三元组:8 - 6 == 2 且 6 - 4 == 2 。
(1, 3, 5) 是算术三元组:9 - 7 == 2 且 7 - 5 == 2 。
提示:
3 <= nums.length <= 200
0 <= nums[i] <= 200
1 <= diff <= 50
nums
严格 递增
解题
方法一:哈希表
思路
把所有数存入哈希集合中,枚举所有数,如果集合中同时存在 num - diff
和 num + diff
就把计数器自增。
代码
class Solution {
public int arithmeticTriplets(int[] nums, int diff) {
Set<Integer> set = new HashSet<>(){{
for (int num : nums) this.add(num);
}};
int count = 0;
for (int num : nums) {
if (set.contains(num - diff) && set.contains(num + diff)) count++;
}
return count;
}
}
class Solution {
public:
int arithmeticTriplets(vector<int>& nums, int diff) {
unordered_set<int> st(nums.begin(), nums.end());
int count = 0;
for (int& num : nums) {
if (st.count(num - diff) && st.count(num + diff)) ++count;
}
return count;
}
};
方法二:二分查找
思路
数组是严格递增的,所以可以直接用二分查找 num - diff
和 num + diff
,如果同时存在直接把计数器自增。
代码
class Solution {
public int arithmeticTriplets(int[] nums, int diff) {
int count = 0;
for (int num : nums) {
if (Arrays.binarySearch(nums, num - diff) >= 0 &&
Arrays.binarySearch(nums, num + diff) >= 0) count++;
}
return count;
}
}
class Solution {
public:
int arithmeticTriplets(vector<int>& nums, int diff) {
int count = 0;
for (int& num : nums) {
if (binary_search(nums.begin(), nums.end(), num - diff) &&
binary_search(nums.begin(), nums.end(), num + diff)) count++;
}
return count;
}
};
评论区