题目
给定一个链表的头节点 head
,返回链表开始入环的第一个节点。 如果链表无环,则返回 null
。
如果链表中有某个节点,可以通过连续跟踪 next
指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos
来表示链表尾连接到链表中的位置**(索引从 0 开始)**。如果 pos
是 -1
,则在该链表中没有环。注意:pos
不作为参数进行传递,仅仅是为了标识链表的实际情况。
不允许修改 链表。
示例 1:
输入:head = [3,2,0,-4], pos = 1
输出:返回索引为 1 的链表节点
解释:链表中有一个环,其尾部连接到第二个节点。
示例 2:
输入:head = [1,2], pos = 0
输出:返回索引为 0 的链表节点
解释:链表中有一个环,其尾部连接到第一个节点。
示例 3:
输入:head = [1], pos = -1
输出:返回 null
解释:链表中没有环。
提示:
- 链表中节点的数目范围在范围
[0, 10^4]
内 -10^5 <= Node.val <= 10^5
pos
的值为-1
或者链表中的一个有效索引
解题
方法一:哈希表
思路
遍历每个节点放入不重复集合中,如果放不进去则说明节点重复,链表中有环,直接返回该节点。完成遍历后没有出现环则返回 null
。
代码
public class Solution {
public ListNode detectCycle(ListNode head) {
Set<ListNode> hash = new HashSet<>();
while (head != null) {
if (!hash.add(head)) {
return head;
}
head = head.next;
}
return null;
}
}
方法二:双指针(快慢指针)
思路
首先与 【链表, 双指针】环形链表 一样地判断换是否存在,当快慢指针相遇时,让其中任意一个指针指向头节点,然后让它俩以相同速度前进,再次相遇时所在的节点位置就是环开始的位置。
为什么?
我们假设快慢指针相遇时,慢指针 slow
走了 k
步,那么快指针 fast
一定走了 2k
步:
fast
一定比 slow
多走了 k
步,这多走的 k
步其实就是 fast
指针在环里转圈圈,所以 k
的值就是环长度的「整数倍」。
假设相遇点距环的起点的距离为 m
,那么结合上图的 slow
指针,环的起点距头结点 head
的距离为 k - m
,也就是说如果从 head
前进 k - m
步就能到达环起点。
巧的是,如果从相遇点继续前进 k - m
步,也恰好到达环起点。因为结合上图的 fast
指针,从相遇点开始走k步可以转回到相遇点,那走 k - m
步肯定就走到环起点了:
所以,只要我们把快慢指针中的任一个重新指向 head
,然后两个指针同速前进,k - m
步后一定会相遇,相遇之处就是环的起点了。
参考:判断链表是否包含环
代码
public class Solution {
public ListNode detectCycle(ListNode head) {
ListNode slow = head, fast = head;
while (fast != null && fast.next != null) {
slow = slow.next;
fast = fast.next.next;
if (slow == fast) break;
}
if (fast == null || fast.next == null) return null;
slow = head;
while (slow != fast) {
slow = slow.next;
fast = fast.next;
}
return slow;
}
}
class Solution {
public:
ListNode *detectCycle(ListNode *head) {
ListNode* slow = head, * fast = head;
while (fast && fast->next) {
slow = slow->next;
fast = fast->next->next;
if (slow == fast) {
slow = head;
while (slow != fast) {
slow = slow->next;
fast = fast->next;
}
return slow;
}
}
return nullptr;
}
};
评论区